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On the Generation of Stress and Deformation
in Elastic Solids by High Powered Lasers

Peter J. Torvik

1. INTRODUCTION

The absorption of somse fraction of the energy in a high powered laser

beam at the surface of a solid generates stress and deformation through

several mechanisms. These may be broadly dividead into two categories:

(1) where the stress arises through the thermal expansion of the target

mateialand (2) where the stress in the target arisos through a pressure

loadng esulingfrom the. thermal expansion of the wedium (typically air).

The blow-off phenomenon, in which the stre3S is generated in the target by

the rapid expansion of vaporized target material, may be regarded as a third

category or may be arbitrarily assigned to either of the first two.

A second rationale for classifying the various regimes of stress gener-

ation is furnished by the time scales of the problem. First, the time scale
V ~~~introduced through mechanical inertia of the tagtms econs.~dered. If

the heating rates are sufficiently low, it is evident that acceleration terms
in the target response can be neglected and a static sztrss analysis per-
formed. Such problems may be termed thermal stress problems. On the other
hand, under very short heating times, significant temperature changes may
occur before significant deformation has occurred. In such cases, the influ-

ence of target material inertia is to serve as a constraint thereby raicing

the levels of thermal stress. These may be labeled as thermal shock problems.

The finite values of target conductivity introduce a second time scale

into the target response. If heating rates are very low, a state of thermal

equilibrium will result with input energy being balanced by "losses" to the

surrounding media or through radial conductions away from the heated area.



These may be regarded as static thermal stress problems. For more rapid

heating rates, changes in temperature must be taken into account, but the

stress and deformation analysis may be performed by neglecting mechanic.l

inertia and performing a static stress and deformation analysis with time

regarded as a parameter. Such problems, where thermal inertia is considered

but mechanical inertia is not, will be termed quasi-static thermal stress

problems. In comparison, the thermal shock regime is seen to exist when both

mechanical inertia and thermal inertia must be considered. The fourth possi-

bility, that thermal inertia may be neglected but meLhanical inertia must be

considered, oczurs in a partially transparent poor conductor where absorption

of a pulse occurs in depth. The initial temperature profile and, hence, the

gradients and resulting stresses will form and be propagated quite indepen-

dently of the thermal diffusion process. For purposes of classification,

these may be called isothermal shock problems and are of particular signifi-

cance in the absa rpion of x rays. However, this class would appear to be of

an academic interest only in targets essentially opaque to laspr radiation,

where absorption occurs at the surface and thermal stresses are generated

after a temperature change arises through conduction.

A further classification of thermal stress problems may be made into

problems of coupled and uncouuled thermoelasticity. In coupled thermoelas-

ticity, the temperature change resulting from a mechanical strain induced

adiabatically is taken into account. This effect is not to be expected to be

of significance in the presence of the very large temperature changes arising

from the absorption of intense laser radiation. A second deviation from clas-

sical thermoelasticity arises if non-Fourier solids are considered in which

the heat conduction law is modified so as to provide finite, rather than infi-

nite, velocities for the propagation of thermal disturbances. Solutions to

2



such nonclassical probleas should be reviewed in order to determine if this ef-

fect is of importance in the generation of thermal stresses by laser heatinR.

Three of these four r3gimes of uncoupled thermoelasticity will be consid-

ered in the second section of this monograph wit'i the goals being as follows:

(1) to determine ci'cumstances under which significarnt thermal stresses will

be generated, and (2) to provide readily used formulae, charts and algorithms

for estimating the magnitude of the thermal stress. Consideration of isother-

mal shock will be left for a later work.

In the third section, the generation of stress And deformation by mecha-

nisms involving a pressure loading will be considered with the emphasis again

being on determining circumstances under wvich the stresses and deformations

are significant and on providing means of estimating the magnitude of the

effect.

In the fourth section, damage mechanisms will be treated. Of particular

interest is determining the likelihood that fluctuations in stress by what-

ever mechanism produced will be of such magnitude as to cause failure through

catastrophic (unstable) crack growth or eventual fracture through crack prop-

agation. In order to better assess the significance of stresses and deforma-

tions produced by laser heating, comparisons will be made with other damage

mechanisms, notably melt through and thermal softening. !

3
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II. UNCOUPLED THERNOELASTICITY

The classification scheme introduced in the introduction wys based on two

time scales. The first was the thermal time scale, which arises from the dif-

fusive nature of the heat conduction equation. As will be seen in more detail

later, solutions to one-dimensional, linear heat conduction problems typically

show a dependence on time and spatial coordinate in the combination Kt/xl,

where K is the thermal diffasivity, t'is time and x the characteristic

coordinate. Thus, for times t long compared to a critical time

t = L'/c (1)
c

where L is a characteristic dimension of the object, the temperature field

may be regarded as static. Conversely, for t < tc, significant changes in

the temperature field will occur and must be accounted for through solving

the diffusion equation for the temperature field subject to appropriate

thermal boundary conditions.

The second time scale of interest is the propagation time for elastic

disturbances

t =L/Ce
cE

where L is again a critical dimension of the heated object and C is an elas-
e

tic wave speed,of order 2-5 km/sec in an unbounded soll.d. Table I depicts

the result of this classification and sets down the terminology to be used

in this section.

4
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TABLE I

Classification of Uncoupled Thermoelastic Problems

Thermal Inertia Mechanical Inertia

t < L'/I t > L2 /I t < L/Ce t > L/Ce

Static Thermal Stress X X

Quasi Static Thermal Stress X X

IsoIhermal Shock

Thermal Shock X X

2or an isotropic Fourier solid, the components of the heat flux vector,

qi, are related to the spatial gradients of the temperature field through

aT
q = -k (2)

Sax i

and conservation of energy leads to

0£ = a q (3)

where k is the thermal co.iductivity, p is the density, 1 is the internal ener-

8gy, oij are the stresses, and cij the strains. For an elastic solid

pT =-q (4)

5



where the entropy n is given by

in= (5)
DT

and

* = 6(co, T) - n(c ij T)T (6)

is the free energy. From (3), (4) and (6), Equation (5) follows, and that

a P (7)oij = ij

The specific heat at constant volume, C v, is defined from Equation (3), with

Cij = 0, or

PCvT = =-,i (8)

Equat-ion (4) may be written as

-q pT C. + (9)

be ijaT ij 3T

substituting Equation (7) and noting from (8) and (10) that

PC = -pT (11)

we arrive at

T(- .- "); + PC (12)

6
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For an elastic material undergoing temptrature change

"ai X i.6kk - 21ij - (3O + 206i (T - T ) (13)

ijij ijT

where X,p are the Lame constants, aT is the coefficient of thermal expansion,

and T is the uniform temperature in the rdference (unstrained) state. Sub-
0

stituting (13) and (2) into (12) leads to

8)T _3k (1Tkaxi ia v at + '(3X + 2U)mT kk (14)

Linearization (by fixing T at a con&Lant value) leads to the coupled theory

of thermoelasticity. Neglecting the last term leads to the familiar governing

differential equation of linear heat conduction

92T = (15)

where the thermal diffusivity, K, is defined by

k (16)
PC v

This development is a summary of the more comprehensive treatment given in
1

standard sources, such as Boley and Weiner • Numerous solutions to Equa-

tion (13) for various boundary conditions are given in the standard work on

2heat conduction in solids . Solutions of particular interest to laser heating

3problems have also been identified

1Boley, B. A. and Weiner, J. H., Theory of Thermal StresseG, John Wiley,
New York, 1960.

2 Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford
University Press, 1959.

3 Torvik, P. J., Thermal Response Calculations and Their Role in the
Design of Experiments, AFIT TR 73-6, 1973.

7



The strains LiJ are related to displacements, U,, through

C 1 (-Ui .x !S (7

i = 2 'ax ax

in the infinitesimal theory. Conservation of linear momentum requires that

PU (18)

fix1  I

where the stresses aij are related to strains through Equation (13) and,

hence, to displacements. Substitution of (13) and (17) into (18) produces

aiL 311J+ 1 au
(A + P) - OAxfx - + 20) aT -M = p -tT (19)

The problem of uncoupled thermoelasticity is the solution of Equation (19)

where the temperature gradients are determined from the solution of (15)

subject to appropriate boundary conditions.

8



A. Static Thermal Stresses

Thermal stress arising from a static temperature field will not be en-

countered frequently witl- high levels of incident intensity, but one partic-

ular case is of such sigufftcance as to merit consideration.

Consider a flat sheet of i.ickness 1 and large lateral dimension. Energy

is absorbed at rate I per uniL area, pe unit time, uniformly over a circle

of radius a. We assume that the temperature under the beam, T,, is essen-

tially uniform and steady. An energy balance on the disk of thickness I and

radius a immediately under the beam leads to

I wa1 = 2(va2)[hT + ¢o{(To+ T) - T 2walk 1T ()
Sr a

The first term on the right represents losses to the surroundings at tempera-

ture T , and the secod, losses frora the ,teated disk duc to radial conduction.o

For simplicity, the loss term may be approximated by

h*T 1 = (h + cofs) T1  (2)

where

T (T + T1)2 T 0o2][2T + T1] (3)

TI being the maximum temperature reached relative co the surroundings, C being

the emissivity, o being the Stefan-Boltzman constant, and T1 being the final

temperature of the heated disk measured with respect to the temperature of the

surroundings.

The approximation of a uniform temperature under the heated spot is ap-

propriate from two points of view. First, the precise details of the temper-

9



ature distribution are dependent on local properties of the beam, generully

not well characterized. Secondly, local surface melting under the beam will

serve to "smear" the temperature into a uniform value, namely, the melting

temperature. It is presumed in Equation (I) that the thermal inertia is

negligible, i.e.

PC watlT << I aW (4)

Outside the heated region, r > a, we have

kVWT - 2h*T/l = PC pT (5)

with boundary conditions T(r) = Tip T(-) = 0, and the gradient at r = a given

by Equation (1). Again neglecting the thermal inertia and defining a Biot

number

h*l (6)
k

we find

T = AK (/25 r/l) (7)
0

where

A = T I(K (V20 all))- (8)

Here K is the modified Bessel function of the second kind and order zero. If0

T1.1 T., the melting temperature, we see from Equation (1) that

k K1 (/25 a/l)
I< 2h*TI + 2 2 K T1 (9)

a - a K (/2a/l)1(9)

S~10



We may expect losses from the heated area to the surroundings (the first term

on the right hand side) to be negligible compared to losses due to radial con-

duction (the second term). For small argumentn,

K (z) ~ -lnz (lOa)
0

KI(Z) - l/z (lOb)

Thus

T Ina ( when /20I << 1 (11)

a/20

and the temperature for small r decays logarithmically.

From the temperature distribution

T = T1 r < a (12a)

T = T K (20 a/l) , r > a (12b)
1
K 6(20 a/l) -

with T1 given by (9) or (11), as appropriate, we way compute thermal stresses

using results given previously. 1

For any axially symmetric temperature distribution T(r), the stresses and

displacements are:

-UE jr EC, EC2
= JfTrdr 2 (13)Trr I-v TiT(3

- .=-r Trdr - aET + EC+ I EC2 (14)

1IBoley, B. A. and Weiner, J. H., Theory of Thermal Stresses, John Wiley,
New York, 1960, pp 288-290.

11i
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U= (1 r Trdr + C Cr (15)

for arbitrary C. Here we require:

in Region I: (r < a) that Ur remain bounded.

in Region IT: r > a that a = 0 as r + 00.rr

on r = a that the normal traction and displacements of Region I match

those of Region II. If we neglect the change in modulus resulting from the

temperature increase, for r i a:

orr = -EoTI/2 (16)

aooe = -EctTI/2 (17)

Ur = (1+v)*T1 r/2 (18)

for r > a:

r ETcaat
-r-= rTdr - -2 (19)

rr 
1

%ee ITr rTdr + E -1 EaT (20)

r aT a2

U = r rTdr (l+v) 1 (21)
r r 2r

For the temperature field given by Equations (7) and (8), for r > a

r T(
SrTdr -KoP [paKl(pa) - prK1 (pr)] (22)

a Ko p)

where

p a i2011 (23)

12



and T is determined from the incident flux through Equation (9). Hence

uETI [paK1 (pa) - pr- 1 (pr)] ___4)

rr -Kp)+ (pa)'1j (24)
=r Tr_1 (pa)2

02

mET1  [paK1 (pa) - prK1 (pr)] (pa)' K (pr)-- ( (pr)z 1_0L-)(25
000 (pr) K (pa) 2 r (25)

We note arr to be everywhere compressive but that a., becomts tensile for

r > r* where

paK°(pa)
pa {Kl(pa) + 2 } = pr* {Kl(pr*) + pr*K (pr*)) (26)

2 0

For lerae valu~s of pa, ssymp-otic expansions may to used to give:

1 (pa)3/2 e-pa (pr*)3/ 2 e-pr* (27)

Approximate solutions then give the following results

p -a r*/a|

5 1.2
10 1.08
20 1.04

From these few values, we see that the ratio r*/a does indeed approach

unity for large pa, as expected. Thus, the region of large compressive cir-

cumferential stress becomes small, the radius at which tensile stresses de-

velop is reduced, and the magnitude of those tensile stresses increases as pa

is increased. Recalling that a large pa corresponds to a poor conductor, and

that stresses decay as r increases, we see that large tensile circumferential

stresses are a peculiar problem to poor thermal conductors.

13



One aspect of these results is somewhat astonishing. We note from

Equations (16) and (17) that the stresses under the heated region are inde-

pendent of the value of pa and hence of the quantity:

h.* a. (26)
k 1

i.e., the thermal conductivity outside the heated region does not affect

stresses within. Thus, in good conductors, such as ductile metals, large

maximum shear stresses will be found under the heated region, but tensile

stresses outside will be small. Thus failure will be localized to the heated

region. For poor conductors, however, large tensile stresses will also be

found outside the heated region, thus introducing the possibility of cracking,

or crack growth, in the portions of a target aot heated directly.

For computational purposes, let us define

F (pa) = paK (pa) + (Pa)&Ko(pa) (29)

F2 (pr) = prK1 (pr) + (pr)2K0 (pr) (30)

Then Equation (C6) may be rewrittin

aS {F (pa) - F 2(pr))
se 1 2 a)& (31)

EaTI - (pa)'K o(p) r

Figure 1 depicts grapht:slly the functions Fl, F2 for a range of arguments

and shows tI at small pa does not give rije to small pr. Rather, we note that

tLe radius, r*, at which the circumferential stress becomes tensile remains

large. From Equation (31) tensile stresses develop for F1 (pa) = F2 (pr*).

From the graph we may deduce the following

14
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rp"7
II

RS P--*r*/.

.01 1.2 120
01 1.2 12
.5 1.4 7

1.0 1.75 1.75
2.0 2.7 1.35
5.0 5.7 -1I.14

Because of the decay of stress with r' (Equation (31)), the tensile stress

which eventually develops in a good conductor will be negligible. Thus ten-

sile stresses of significance, i.e. near to the heated region, will develop

only for poor conductors. (It also shows the asymptotic expansions used

(Equation (27)) become applicable for pa greater than 5).

Hand computations for a few specific instances demonstrate this phe-

nomenons

Example 1. For a ceramic material 1/4 cm thick in turbulent flow, under

a beam of 10 cm diameter, taking h = 10-3 watt/cm' 0 C and k = -. 01 Joule/

sec cm 0C, we find pa e 6. In this case, r*/a = 1.1 and stresses are found

as follows from Figure I and Equation (31).

/./EaTl
n/a 8r0 1

1.12 6.8 10
1.16 7 .093
1.2 7.2 .145
1.4 8.4 .257
1.5 9 .256
1.6 9.6 .231
2.0 12 .169

Example 2. A disk of alumina (A12 03 ) 1/2 cm thick in the same turbulent flow

(h = 10-3 watt/cma°C) with k - .2 Joule/sec cmOC and a 6 cm diameter beam

leads to pa = .4. In this case, tensile stresses develop at pr* 1.3. A

few stresses are

16



-3 1.3 ~0
3.5 1.4 .0161

5 2.0 .0507
6.25 2.5 .0547
7.5 3.0 .0519
9.0 3.6 .045

Example 3. A disk of aluminum (k = 2 Joule/sec cm°C), otherwise identical to

the preceding example leads to pa ~ .1. In this case, tensile stresses de-

velop for pr* = 1.2 or r,'a 12. Some stresses are

r/M P-r0 0 /EaT

12 1.2 ~O
14 1.4 .0135
20 2.0 .0267
22 2.2 .0276
25 2.5 .0275
30 3.o .0257
50 5.0 .0144

For very good conductors k * 00 and pa 0 0. In this case pr* * 1.2 and

r* 00 as k + 00. Since Limp8+O F (pa) * 1, we may develop a simple bound
pa*

on the maximum tensile stress possible in a good conductor. Setting K o(pa) =

-ln(pa) and

• 1 Fl(pa) 1

in Equation (31), and differentiating with respect to r, we find that the

maximum tensile stress always occurs at pr = 2.32. Hence, a bound on the

tensile stress, valid for pa < .3, is

°OT J -0.0687 (32)E mT-- ln(p&) (2

max

17



Thus the tensile stress always develops but at increasingly large (r/a

2.32/pa) distances from the heated area.

It is easy to show that for large pa (the perfect insulator) the maximum

tensile stress occurs Just outside the heated area and is of magnitude

%Oe -

EaT- 2

These computed values, together with the stress distribution for a per-

fect insulator (k = 0) are sketched in Figure 2. The decrease in the maxial.m

tensile stress for decreasing pa (increasing conductivity) is evident. The

bound (Equation (32)) is given &s the dashed line and represents the envelope

enclosing all peaks obtained for pa < 0.3.

I
iI
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B. Quasi-Stadic Thermal Stresses

1. Local Heating of Thin Sheets

As a first example of a quasi-static thermal stress distribution, let us

consider the process whereby the long-time stress distribution given in the

preceding section is developed. We first consider the special case of the

poor conductor, for which the temperature outside of the heated area remains

at the ambient temperature, but assume a uniform temperature T (t) for r < a.

These assumptions are appropriate for heating times short compared to radial

diffusion times,

0o<< td = a/k (1)

but long compared to the thermal diffusion time through a thin sheet

to << l/k (2)

In this case

Tl I T l(t) - CaI t (3)

for a beam of uniform absorbed intensity I •a

In consequence of this tempernture distribution, thermal expansion occurs

vver o < r < a which is partially restrained by the surrounding material which

in still (since we are ignoring thermal conduction) at T = T . Thus, the
o

stress t~eld which results is that resulting from forcing a disk of radius

a' = a(l + aT1 ) (4)

into a hole of radius a in a sheet of the same thickness. The displacements

20



in the inner and outer regions are the well known radial distributions of the

Lame problem,

U1 = Ar + B/r (5a)

U = Cr + D/r (5b)
0

matching normal stress on r = a and requiring continuity

at + Ui =a + U (6)

leads to C B = 0 and

I + v

D a' (a*2*-+) T1  (7)

A -a ( V_ ) TT (8)

2 1

From which we find

EaT1

Srri 2 (9)

EaT1 as (10)

rr -2 (7)
0

In addition to these radial stresses, circumferential stresses also develop

and are of magnitude

EaT
a 2 -- (12)

06 EaT 8
oee 2 -----( ) (12)

21
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for the assumed state of plane stress. It is these tensile stresses outside

of the heated region which we may expect to have an effect on crack propaga-

tion. The maximum value is

EaT1
0eex 2 (13)

max

In a ductile material, some yielding is to be expected when the maximum shear

stress exceeds a critical value. In the heated region,

EaT1Tmx 4 (14)

everywhere, and outside the heated region

EaT1
t - - (15)
max 2 2

at the edge of the heated zone.

We may note a fracture criterion for a brittle material which is a poor

thermal conductor. Under these conditions, a uniform deposition of energy Q

over a circle of radius a will lead to fracture if

pC 1

crit 2 crit Ea

and acrit is the tensile stress producing fracture,

SWe may take thermal softening into account. If the modulus of the heated

material is

E(T1) = E1  (17)

.1 22
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then the matching of stresses and displacements at r a leads to

E
D T Tla'c ÷ [ + (18a)

F I + v )E
1 1

A - Tlca ÷[ + + "1 - v)] (18b)

0

and stresses

y T + v] (19)rrl " l Eo

T [ V + + V] (20)

° o I ' [E -1. ]

Eh aTim~ 1esl tesaanocr utotietehae einadi

BoaTI

ae E (23)
max [( + V) + E0 2 I - 01

If the tempeiature is such that the modulus is reduced by 50%, and v = 1/3,

then the maximum tensile stress can be seen to be 75% of the value obseived

without the thermal softening effect. The maximum shear stresses are also

readily seen to be reduced by the thermal softening effect in the same ratio

max softened 2 (24)

max nominal E

+ + .'..2 (1 -

23



Thus, while thermal softening relieves some of the stresses, it does not

eliminate them completely.

As a demonstration of the manner in which thermal softening within the

heated region curtails the development of tensile stresses outside, let us

consider a hypothetical material, for which

o 2T
ET E oCS(i T) (25)

m

Heating Is presumed to occur in accord with Equation (3),and tensile stresses

as given by Equation (22) to develop.

We find

max t [(l + v) + (l- v) sec (• ] (26)EaT - tt
m m m

* where

" i

t = 1GplT /1 (27)
M pmI a

is the time required to produce meeting. This result is depicted graphically

as Figure 3.

Let us now consider the occurrence of yielding in the heated region of

an elastic, perfectly plastic material of negligible thermal conductivity,

recognizing that these two assumptions are in large part mutually exclusive,

for those materials which yield plastically, e.g. metals, tend to be good

thermal conductors. As is well known, ductile metals have yield points which

are strongly temperature dependent. Thus, if the process described in the

preceding progtesses to some temperature such that

24
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EaT(
a =e - -C2 a (T) (28)

further heating will not increase the stresses for either r < a or r > a.

Rather, further heating will reduce the yield points and hence the stresses.

If heating is stopped at some temperature Tf (T 1 < Tf < T M), the stress dis-

tribution at that time will be

ar =oee =-aee = -o (T) (29) Srri a °ro o0 y

if thermal softening and heat conduction for r > a is neglected. We now sup-

pose that the entire plate returns to the ambient temperature, and a process

of elastic recovery occurs. The stresses which develop during this process

are readily seen to be

0rr1  = Ea(T )/2 (30)

0 rr° 0 e 0 a(+Tf)/12a1/r') (31)
0 0

superposing these onto the stresses at the end of the heating period gives the

final state of stress inside r = a as

Tf

O'rrI = e0i ='aT --y(Tf) (32)

and for r = a in the exterior

0 rr = -0eg° Ea 2 - .7y(Tf) (33)

Thus, it is seen that large residual tensile stresses can develop. If

26
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the elastic perfectly plastic material is heated to the melting point, and the

melt remains in place, these final stresses can be as large as

a =EaT /2 (34)
max m

which may be of the order of the yield stress at room temperature. Moreover,

these large tensile residual stresses may produce fracture. Thus, a single

large pulse, not quite capable of producing melt through, may give rise to

mechanical failure. The time history of the process is depicted graphically

in Figure 4. The process occurs as follows. During 0 < t < ti, heating

occurs, (OA) and elastic stresses equal to a (T) develop. From t< t < tfs

heating continues, but the heated disk deforms plastically (AB) and the

stresses fall to a y(T 2). For t > tcooling takes place, and the material

loads elastically (BC) to the final stress, given by Equation (33). in a

work hardening material, the stress at t f will be greater and the final value,

freduced.

This damage mechanism appears to be of such significance as to merit

further study. in particular, the degree to which radial conduction away

from the heated region and strain hardening alleviates the stresses should

be examined.

Proceeding in the same manner as in Section A, it can be shown that con-

duction for r > a during heating does not affect the state of residual stress

after cesssation of heating and the establishment of thermal equilibrium.

The influence of strain hardening may be developed as follows. We assume

the stress strain curve for the material is

a = Ec for a < a (35a)
y

a = a*y + E(c - c /E) for a> a (35b)
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where a is taken to be a function of temperature but E and 0 are not. Thisy

stress-strain curve is depicted graphically as Figure 5.

Let us again suppose the region r < a is again raised to a temperature

TI and that yield initiates uniformly on r < a according to a maximum shear

criterion. We then assume that heating continues to a temperature T2 > T1

with the final strains being

E E U(a) (36)
rr 66 a

Hence

a 0  ri a ay(T2 )(l - B) + BE U(a) (37)

These radial stresses and displacements must match (at r = a) those of the

exterior region, arr = -C 4 E/[(l+v)r*] and Ur = C4 /r at r = a. Hence

C4 = + y(T 2 )(1 - OW (38)
E(-B + I-)

and the stresses in r < a become

-a (T 2 )(l - B)
a a).. (39)rr ( t)

while for r > a

S-a (T 2 )( - ) (40a)Ero T T1+ v)] 4a

0 y ( ( M2 )( ) - 5) (40b)
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Cooling to the ambient temperature again leads to the superposition of Lame

stresses, and the final residual stress state is:

= = a(T2 ) a Y(T 2 )(l - 0)
°rri °eet 2 l - (0 + 57](4m

EaT 2  oy (T 2 )(1 - B)(
0rr = -%e 2 rL- - I1 - +r (4(b)

0 0

We conclude that strain hardening will reduce the magnitude of the resid-

ual stresses appreciably only if the final temperature, T2 , is only slightly

above the value at which yielding occurred. For example, if the relationship

between yield stress is taken to be

o = a (1 T ) (42)
Y O 12001C

which, at least qualitatively, describes data available for several materials,

3 (43)
-3

B = (44)

the residual stress without strain hardening is

EaT2  T2
a R 2 2 - yo- -y0 1200O0c) (45)

1Holmes, B. S., and Desmond, T. P., Thermal Mechanical Damage Study,
Monthly Status Report #8, Contract # F29601-78-C-OO41, SRI International,
May, 1979.
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and

RmT 2  6T

if *train hardening is included.
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2. Uniform Heating of Plates

In the preceeding section, thermal stresses resulting

from radial variations in temperature were considered, while a

uniform temperature was assumed through the thickness. We turn

now to the other limiting case - that of variations in temperatures

through the thickness of a plate, with no temperature variations

in the transverse direction, as would be encountered if energy is

absorbed at a uniform rate, I., over a sufficiently large area.

a. The Free Plate.

We first assume the plate to be free, that is, that

there are no boundary constraints. For convenience, we take the

plate to be rectangular of thickness h, bounded by planes Z-0 and

Z-h.

Ignoring mechanical inertia, we see that a state of

plane stress will result, i.e, a - 0. Thio'igh considerations of

symmetry, we see also that a 0 and that a a = o(Z). Thexy xx yy
stress strain relationships then give

Ee = (l-v) a(Z) + Ea T = EF(Z) (1)
xx

Ee = (l-v) a(Z) + Ea T - EF(Z) (2)

and inplane displacements may be obtained through integration of

the strains. The result is of the form:

Ux - x F(Z) + h(Z, y) (3)

Uy M y F(Z) + g(Z, x) (4)

The thickness strain, and displacement are (respectively)

- 2v O(Z) + a T - G(Z) (5)

Uz - IG(Z)dZ + k(x, y) (6)

Shear stresses are then seen to be

axZ v p {x F'(Z) + i- + 'k (7)

p- ( {y F'(Z) + + Dk) (8)
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Since - - a(Z) and - 0, the equilibrir~m equationsxx yy xy

require that

oxZ a2h
a 0 or XF"(Z) + - - 0 (9)

az aZ2

a2g
_Z - 0 or yF"(Z) + --- 0 (10)
aZ ax 2

Since h is independent of x, and g of y, we see that

FV - const - Ce. Hence

F(Z) - c1 Z + C2  (11)

and we arrive at a stress disbribution
a(Z)- xx a a yy - {C 1 Z + C2 - OT) (12)

where temperature, T, is measured with respect to an ambient,

unstressed, state.

If we require the plate edges to be free, the moment per

unit length muse vanish, i.e.,

MT - 0 - fh a(Z - h/2) dZ = 0 (13)
0

and the in-plane force per unit length must also vanish, i.e.,

-fhFT adzo 0 (14)

These give

C2 - Leh (2h - 3Z) TdZ (15a)
h20

C 6AS fh (2Z - h) TdZ (15b)
h 3 0

From which we may deduce the final expression for the thermal stress
in a free plate, uniformly heated over one entire face tc be

Ect F 6Z h 2 h*a in- l (2Z-h) TdZ + - (h T]
axx = Oyy l-v 3 -fh2 0o (2h - 3Z) TdZ - (16)

It is readily shown that a uniform or linear temperature produces
no stress, even if the coefficients are time dependent, as in

T - A(t)Z + B(t) (17)

34
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For a plate absorbing energy at a rate Ia per unit area,

per unit time, on the plane Z - h, with no losses on the fi ze

Z - 0, the temperature may be shown to be

It I h 21h -n th
T(Z,t) _a + a (Z 2 /h 2-_/3) _,E a () Kn22t/h2 os (18)

pCph 2k n-1 kn 2 2  h

For large values of time, the series makes negligible contributions,

and the temperature may be satisfactorily approximated1 by the first

two terms. Of these, the first is recognized as leading to no stress.

Thus, for long times, the stresses are generated by the quadratic

term in the temperature, and are

axx ay Q' b... (19)
x yy 2(l-v)k h 2  6

The maximum value occurs at the front and rear faces, and is a

compressive stress of magnitude

Ea I ha (20)
12(l-v)k

The maximum tensile stress occurs at the mid-plane, and is of

magnitude

Ea I ha (21)

24(1-v)k

These, we note, are static stresses even though the generating

temperature (Equation 18) increases linearly, with time, at long

times.

Torvik, P.J., Thermal Response Calculations and Their Role in the

Design of Experiments, AFIT-TR-73-6. Also in Proceedings of

1973 DOD Laser Effects and Hardening Conference, Monterey CA,

Oct 1973.
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At short times, stresses generated by the series terms must also be

included

Ed I&•)trn I 2 h I' j -Kn' t /h' cos no Z 2Z - 222
°trans klv-Nn

This result, with some notational changes, is to be found in Boley1

and has been shown to be negligible for slowly varying heat inputs.

In heat additions which are as step functions in time, as are of

interest here, these terms are of significance for short times.

Some numerical results, obtained by Garrison2 , are presented

in Figures 6 and 7. In figure 6 the distribution of stress through

the thickness is shown for several instants of time. The general

increase with time of the peak tensile stress and the movement of

the place of occurence to the center of the plate can be seen. At

Kt/h 2 > 1, the stresses are indistinguishable from the static value.

The compressive stress at the heated surface first increased and

then decreased. These temporal changes are more clearl, seen in

Figure 7. The peak compressive stress is seen to reach a value

in a finite plate some 30% greater than the asymptotic value for

long times, as given by Equation 19.

b. The Influence of Constraints.

This simple example of one dimensional temperature variation

in a plate presents an opportunity to investigate the influence of

mechanical constants at the boundary on the stress distribution.

Computing the solutions for the displacement (using the symmetry of

x and y axes), we find

Ux - C 1 x Z + C 2 x + D (23a)

Uy - C1 Y Z + C2 y + D (23b)

UZ - f& 1-v UT -2 (C 1 Z+C 2 )} dZ -.- (x 2 + y 2 ) + E (23c)U 0 1-V 1-v 2

IBoley and Wiener, p 285.

2Garrison, Jan N., Thermal Stresses as a Laser Heating Damage

Mechanism, AFIT Thesis, GAE/MC/75-4, November 1976.
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As our example, we consider a square plate with side length

a, bounded by x - 0, y - 0, x - a, y - a. Four possible boundary

conditions are possible:

I The edges free.

II The edges constrained to prevent rotation, but in-plane

expansions freely allowed.

III The edges constrained against in-plane displacement at

the mid-plane, but rotations allowed.

IV The edges constrained against both displacement and

rotations.

The stresses for case I are those of Equation 16.

If no rotations are allowed, inspection of the displacements

reveal that C 1 - 0. Ensuring the absence of in-plane forces

requires

fh odZ - 0 (24)

0

or

C2 f • f TdZ (24)
h

hence the stresses are, for case II,

. . 1 Ea (.1 fh TdZ - T) (25)Oxx Oyy 1-v (h o

If now we require that In-plane displacements vanish, for

Z - h/2, on the boundary, we see trom equation 23 that

C2  -. .. - h/2 (26)

Vanishing of edge moment requires th:t

fh (Z - hl) a (*) dZ = 0 (13)
0

or

C, - -2 h f f h ZTdZ) (27a)
-h 0 0

- 6a fh TdZ - fh ZTdZ) (27b)
2 2 o 0

Finally, for case III.

39
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EM h hb 12Zh 1h fh
-a Td fhTdZ)- ~I f TdZ -fZTdZ) T- 28ox 'y 1- 32 o 0

The fourth came arisen for Ux U y 0 for all x, y, t, or

C1 " 0 - C2 - 0. Then

axx -yy 1-•(T)

In order to assess the influence of edge constraints on the stresses,

let us put the temperature distribution for long times (Equations 18)

into the form

T(Z,t) - - - [ + I (Z2/h2 - 1/3)] (29)

where
Kt

T u

h2

is the dimensionless time previously introduced

Then the stresses are found to be, in each case:

I. For no edge constraints:

ja(Iah'\f2us u a 1/12 (1
axx ayy 1-v k 2h 2h2(31)

II. For edges constrained to prohibit rotation only (expansion

permitted) (
-o u -- -(32)

Ixx =yy -1 T /-k - 2h2

III. For edges constrained to prohibit expansion only (rotation

permitted)

xx-'y- IV kT _+ 1/2 Z/h - 1/12) (33)
2h

2

IV. For edges constrained to prohibit both rotation and displace-

met'

.,° C a h

axx -y a + 1 - Z (34)
0 xy 1-v k 6 2h 2

40
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In all cases the maximum stress is compressive, and occurs at

the heated face and is independent of plate size. We note that

it is the in-plane constraints rather than the bending constraint

which generates the large stresses at long times. At shorter times

however, T \ .25 or less, we note that greater stresses are

generated through the bending constraint. Although these simple

expressions are not valid for values of T much smaller than this

value, the same generalization is valid for very small T.

At very short times, T < < 1, we may regard the plate as

being of infinite thickness. In this case,

21
T (Z,t) -= t ierfc (Z (35)

k

where Z is now measured into the slab, with Z = 0 being the heated

face. Recognizing that the unheated (and therefore unexpanded)

mass of thick plate serves as a constraint on the heated surface

layer, the stresses are (from case IV)

EaT

a a -- (36)xx yy 1-v

The maximum stress is again compressive, at the surface, and given

by:

axx (Ot) - ayy (0,t) Ea- a k (37)

The dashed line of Figure 6 shows the stress at the surface

computed from Equation 37. These values, which are analogous to

complete constraint, are slightly greater, at small times than the

numerical results obtained for the free plate. The stresses in

the thick slab decay rapidly with depth according to

a Ea .-- a- /Kti erf c Z(38)
xx yy 1-v k

with values at times comparable toýKt/h 2 
- .0057. Computed

results have been added (in dashed lines) to Figure 7 for purposes

41



of comparison with the results obtained for the plate of finite

thickness. The rapid decay from the surface is evident. From

a taLls of values of the ierfc function, it may be deduced that

the stresses fall to 10 of the surface value at a depth Z

S2/K, and to 12 of the surface value at a depth of Z " 3/Kt.
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C. Thermal Shook

As a first example of a problem wherein the effects of thermal inertia,

as well as mechanical inertia, are significant, we consider a thin elastic

plate, circular in planform, and supported at the outer periphery (clamped,

or simply supported). A uniform energy flux I is absorbed over the entirea

surface, commencing at t = 0. Thus we assume a through-the-thickness temp-

erature variation only, which generates a thermal moment. The response of

the plate to the uniform, but time varying moment is desired.

We let w(r,t) be the deflection of the mid plane of a plate bounded

by -h/2 < z < h. Then, using elementary plate theory

ur -z W- ; ue = 0 and (1)

Zr = w z - w (2)%r= rr 77 ae =- 7-"

Hence, for a linear elastic material at temperature T above the ambient

(unstressed) temperature

+rr = [ z 2- + r- -y- aT (3a)

We define total moments (per unit length) and a thermal moment, according to

Mr= +J zarrdz (4a)
-h/2

h/2

Me=J zo 0 dz (4b)

-h/2

h/2
= J zEaTdz (4c)

-h/2
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This produces

Mr a - D( law + 1-.- (-a)

Ne a - D ( law +V' T• (5b)
or Sr4* r' -V(b

whe•e
EhlD = (6)

An obvious division of the total moments into mechanical and thermal compo-

nents can be made. Since no elongation of fibers on the neutral plane of

myinmetry is allowed in elementary theory, in-plane stresses will also develop.

From the sign conventions and free body diagrams of Figure 8 we deduce

that equilibrium of moments about the 0 axis requires that:

(M + M dr)(r + dr)de - Mrrde - (M + 1- rde)drde -Qrdrde =0 (7)r or r 0 so
or

SMr
r- + (Mr -N)-Qr=o (8)

Summing vertical forces gives (from Fig ld)

J h2vw(rt)rdr= 2wrQ (9)
0W

Thus one form of the governing equation for the plate is:

-- r r Irhr(r,t)dr 0 (10)
0

we note, from 5, that

d 1wMr -M D-V(l-v)rr(--) (11)
r Tr Srar

We note differentiation produces

r JlA(rtfdr P phrQ(r,t) (12)

0
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and that

v'w I ( w (13)
Ur

for this axisymmetric problem. Differentiating Equation (5a) once gives

ON r rAT
r - - Dr (llw/or" + v/r owtor) - |- (14)

Combining with 11, Equation (10) becomes:

Dr{L V'w) + r ph(rt)dr + r 0 (15)
0

which, for static problems, is convenient to integrate. In dynamic problems,

we differentiate all teras and divide by r to obtain the differential equa-

tion'of the vibrating plate
1 Vt

DV'w + ph; + T I NT= 0 (16)

which is to be solved, subject to initial conditions and boundary conditions.

If the response to a simultaneous pressure and thermal loading is desired, a

prescribed pressure may be added to the right hand side of 16. Such problems

will be addressed in a later chapter.

We consider first the simply supported plate. The boundary conditions

on r = a are

Mr(a,t) = 0 (17a)

w(a,t) = 0 (17b)

with initial conditions

w(ro) = i(ro) = 0 (18)

The associated homogeneous problem

DO wH + ph;H 0 (19)
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a2w H V awH

wH =0 on r a (20b)

w (r,o) =f(r) (21a)

4,(r,o) =g(r)(2b

has the solution

WH= ( A sin wt +B cos wt)R (r) (22)
n= n n n n

where the eigenfunctions R n (r) are

J (p a)

R (r) =Jo(P r) - I0 pa I (pnr) (23)

with

2p a J1(p a) I (p a) (4

The coefficients An, B nare given byn

[Anwn = Wdr gr) (25)

B n N 0 L f(r) j n~rd

Rtrigto Equation 16, we exadteleft hand siein trsof the (6

Let 1 2T F r) (71-V n-i Fn(t)Rn((27

and let w(r~t) - w*(r,t) +p(r)q(t) (28)

where the functions p(r) and q(t) are to be chosen so as to leave homogeneous
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bounarYconitiUS w~at r a. Such a choice is

p(r) a(a - r) 
(9

a M (a,t) (0

vD 1-v

ph(a-r)q ntR(n)(1
n-i

and

w *~ (r~t) -)Wu(t)Pn(Pnr) 

(2

Then substitution yields

phW~n(t) + Dpn Wn(t) -- (Fn + Gn) 
(33)

where p(t) a -vM~~)( 
n-~r(4

Wn 0

and(t h--TTat)ararR(ndr(5

Gn ~N vD I-V I

The new initial conditions becomet:(3a

v(r,o) -0 aw' (r~o) +- (a-r)q(o)(3a

- 0 4~(ra + (-r)(o)(36b~l

Thsa KT(a,O) (37a)

- I ~ Wn(0)R,(pnr) -- (a-r)

a L ao (37b)

S*,.(0) - Rn(pnr) -- (a-r) ý! - lv

a M,(a,o) I. r~arR pnrd

a -0 
a~ 1 n (a-r)R (p Zr)dr (38b)
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Given a time history of temperature, then, MT may be computed from Equation

4c, and the time dependent amplitudes determined from equation 33, 34 and 35,

with initial conditions given by 38.

The solution for the analogous problem of the beam and the rectangular

plate have been given by Boley, and the observation made that the results

for the thermal vibrations of beams differ but little from those of plates.

That being the case, it would appear that the beam results should suffice

for the circular plate as well, if the effective beam length is taken to be

diameter. The results are expressible in terms of a ratio of dytnamic to

static deflection,
-B1

wx 1 + 2e for B1 > - .69
R=1 - (39)

Wmax static 2 for B1 < - .69

where
hi D 1/4

B r --- (-) (40)
1 2aK hip

and a is the plate radius. Physically, B1
2 corresponds to the ratio of thermal

response time to mechanical response time. The static deflection of a simply

supported plate under thermal load is obtained from Equation 16:

DV2W + • - harmonic function of r only (41)"'
I-V

For a solid plate, with temperature independent of r, and having a simply

supported edge,

MT(a 2 - r 2 )6
Eh3

The stresses are
12MT E

a - -- 4a
rr (l-v)h 3  V - j- caT (42a)

1
Boley and Weiner, pp 406-409.
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"12 HTz EaT -- (42b)
7e -(I--v~h -T1 -v

These, it should be noted, are identical to the stresses obtained in

Case III of section B2b, aside from changes in notation.

To account for the dynamic effect (approximately), we way compute the

dimensionless ratio B1 , from equation 40, and the stresses from 42, and adjust

by multiplying by the ratio R computed from equation 39.

In the case of clamped edges, we note that the boundary conditions are

naturally homogeneous, even in the presence of the thermal loading, i.e,,

aw

w(a,t) = (a,t) = 0

Hence, for homogeneous initial conditions, we need only solve equation 16.

We note immediately that in the special case where the temperature is inde-

oendent of r, that

VIM = 0

Hence, w(r,t) = 0 and the stressee for the dynamic problem (thermal shock)

are the same as for the quasistatic problem, as no displacements develop.

This is correct only to the limits of thin plate theory, which does not pro-

vide for "through the thicknesE diipl~cements" in addition to those of the

neutral axis.



I11. STRESS GENERATION BY AIR ABSORPTION

A. The Generation of Front Surface Pressures

We consider a laser beam absorbed over a surface of a progressive front,

leaving behind a pressure P, density p, particle velocity U, measured in an

inertial frame. The front is taken to propagate at speed D. By conservation

of mass

poD = pf(D-U) (1)

By conservation of momentum

Pf- P = p0DU (2)

By conservation of energy

P + P
Ef -go AE = 0of- ( 1 (3)f -0 2 P0o Pf()

Aside from AE, the energy added per unit mass, these are the familiar Rankine

Hugoniot Jump conditions across a shock front.

Here, the added energy per unit mass is computed by observing that, for

any area, A, of the front, the laser flux f arriving over time At is assumed

to be completely absorbed by the volume of material processed during the same

interval, i.e.

AE •. fAtAt/Am (4)

The mass absorbing AE is

Am AP 0 DAt, (5)
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Hence

E= f/p D (6)
0

For a perfect gas,

E = VT (7)

P pRT (8)

SR C Cp - C v (9)

C /C (90)
P V

Hence we may put Equations (1), (2), and (3) into the form

1 l (

Of (11)

f P + p DU (12)
Pf~) _____f pPo(0

P_ f P 1Pf + _ 0 (13)Of (y-1) -Po(Y-l) + 'DoD) + 2 o0 Of

The pressure density states achievable for a given f are those given by

Equation (13) where D is to be eliminated through (11) and (12). Combining

(11) and (12) to eliminate U yields (using n = po/f as a compression factor)

U = D(l-n) (14)

= P+ poD(1-0) (15)

and finally Po0

- + - +.i (Pf + Po)(! - 1) (16)
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This is readily solved for Pf if we assume

P << P (17)a f

whence

+11
P 2f L ""1-(18)

This result has been given by Razier who argues that the steady detonation wave

occurs when the sonic speed behind the front given by

P
f

ct = f (19)

is equal to the shock propagation speed, measured with respect to the wave.

The sonic speed from (15) and the definition of n yields

*= yD(l-n)n (20)

Thus, the condition

c =D -U (21)

yields, after using (14), that

1=- (22)Y+l

Taking this to Equation (18) yields

_ý 1 2/3
Pf = 2f (-1) 12- 3 (23)

1Rasier, Y. P. "Heating of a Gas by a Powerful Light Pulse," Soviet
Physics JETP, Vol. 21, No. 5, 1965, pp. 1009-1017.
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Substituting (22) into (15) gives the detonation speed in terms of pressure as

P = ý-D2(24)f Y+l

from which we obtain Razier's result

D = L 2-l) (25)

for the detonation speed as a function of energy absorbed.

Thus, we expect a cylinder of air to be shocked to this pressure Pf, the

length of the cylinder increasing with time as the detonation front propagates

up the beam at speed D.

However, the high pressure in the cylinder of air will relax as the

cylinder expands radially as a cylindrical blast wave. Initially the cylinder

is of beam radius a, and pressure PfC given by (23). As the cylindrical blast

wave expands, the same Rankine Hugoniot Jump .relations must be satisfied across

the shock, which we take to be strong, i.e.

Of _ 1 x±+ (26)
PO n Y

Hence the radial particle velocity Ur is related to the shock speed by

ur i(l _ _) - ; (27)r Y+l Y+l

and

p ja

Pf 0+ (28)
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From considerations of similarity, as in the Taylor Blast Wave solution,

we note the energy per unit length in the z direction of the expanding

cyclinder is

R p(F•)%p •,

E = { po-l + it U'(0) 2wrdr (29)
0 p7; =1) -2

where

r/R (30)

P(r) p = RP(c) (31)
0

U(r) RU(t) (32)

Hence

E= [fl- + Ed} 2wR2 R' (33)

must be constant, or

RR 20a (34)

from whith we deduce that

R = 2C it ; R = C(rt)- (35)

must describe the growth of the cylindrical blast wave.

For an initial radius, a, and initial pressure, Pf, we see
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°Po (36)

Hence

wheY2c a a(Y+l)cf (37)

where

Cf,]

Cf P f (38)

or

R1R = a2 P( (Y-l) (39)
0

Finally,

Pf

P(R) a' f (40)

with

R = (2a(y+l)c ft)1/ 2  (41)

This result differs slightly from that of Nielsen who writes

R a2c a (42)

2 Nielsen, P. E. "Hydrodynamic Calculations of Surface Response in the
Presence of Laser-Supported Detonation Waves," Journal of Applied Physics,
Vol. 46, No. 10, October 1975, pp. 4501-4505.
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where

c 0= IF10 (43)
0

From the foregoing, we may expect that a high intensity laser will produce

a pressure pulse on a surface placed in the beam. The pre:ssure will decay

quickly as a blast wave spreads radially. For high intensity lasers operating

in a pulsed mode, the result will be a pressure field, varying both spatially

and temporally in a very complex manner.

The mechanism of pressure generation we have considered is that known as

the LSD (laser-supported detonation) wave. At lower intensities, a different

process, the LSC (laser-supported combustion) wave occurs 3. In this case, the

energy balance on the processed column of air (plasma) must include the

radiation loss to the target material. Numerical studies have shown the

pressure generated by this mechanism to be 50--60 arm, with up to 50% of the

incident flux being re-radiated to the target. The absorption of this radia-

tion produces the process known as thermal enhancement.

3 Thomas, P. D. "Laser Absorption Wave Formation," AIMA Journal, Vol. 13,
No. 10, October 1975, pp. 1279-1286.
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B. The Response of Finite Plates

The response of an elastic plate to a spatially and time varying distri-

bution of pressure arises in several contexts of the general problem of deter-

mining the response of structures to High Intensity Laser radiation. The

differential equation of the elementary theory of plate bending

DV~w + ph 7 = P(x,y,t) (I)

where w is the displacement normal to the plane was encountered earlier in

determit,ing the response to a thermally induced distributed moment. Here, we

restrict our attention to the isothermal deformations of a simply supported

circular plate under axisymmetric loading. Equation (1) is obtained by noting

thbt Equation (9) (of Section II-C) must be replaced by

2NrQ J ph2w;(r,t)rdr - P(r,t)2wrdr
9 J~o0

where P(r,t) is an axisymmetric, distributed pressure. Equations (5a) and (5b)

go through with the only change being the deletion of the thermal moment. For

the simoly supported plate, the eigenfunctions are

R n(r) o (p nr) - Jo(pna)I(p nr)/I (pna) (2)

with eigenvalues satisfying Equation (II-E-24). The first several are given

1 2(for v = .3) in Leissa's monograph and others in more recent work . The first

1 Leissa, A. W., Vibration of Plates, NASA SP-160, 1969.

2 Lcissa, A. W. and Y. Narita, "Natural Frequencies of Simply Supported Circular
Plates," accepted for publication, Journal of Sound and Vibration.
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11 are tabulated in Table I for 2 values of Poissons ratio. As each eigenfunc-

tion satisfies the condition of vanishing moment and displacement on r = a,

any superposition does as well, and the general solution to Xquation (1) may

be written as
za

w(rt) • Wn(t)Rn(r) (3)

We expand the prescribed pressure, P(r,t) as a series of these eigenfunctions

P(r,t) = fn(t)Rn (r) (4)
n=l

Substitution into Equation (1) leaves, after multipiication by Rn(rJ ara inte-

gration over the domain, a result analogous to II-C-33, or

Dpn4Wn + phWn = fn (t) (5)

where

f n NI P(rt)Rn(r)rdr
n o

Solutions to Equation (5) must satisfy desired initial conditions; typically,

that the plate is at rest for negative time and is set in motion by a pressure

distribution first achieving nonzero values for t = 0.

As a first example, consider a suddenly applied uniform pressure Po0 i.e.,

P(r,t) = P0 u(t)u(b-r) (6)

Here u(s) is the unit step function
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u(s) =0 for s< 0 (7a)

u(s) =1 for s>O (7b)

Then f (t) = 0 for t < 0, while for all t > 0

f(t) f 0  P ib R brd Jo(Pna) b Il(pnb) (8)
n no n n oR(r) Nd [-n Jl(Pnb) I a) p 11 nb_ (8)

and

N a' J 1l+v +I (9)Nn L a 2 0- -o,1_--V 2 1 0

The modal amplitvdas are

fo

W= A sin w t + B cos w t + n (10)
n n n n n Dp "_.

and satisfaction of the homogeneous initial condition requires that

B = -f n/Dpn ; An = 0 (11)

Hence

0 b * nb) Jo(pPna)P b o n Io(Pr a) 1(Pnb)} Jo(pna)
N ( {Jo(pnr) o o(p r})){1 - cos w t) (12)wD~t = n=1 N n Pn 0 o0(P na) 0-i n

where

Dp n
w i ffi _(13)

n ph
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and N are as given above. Now let

J(pna)

on

Pob [JI(Pnb) ( i(Pnb))
oP (14)

An n

so that

w(r,t) A - Cos W t}(J (p r) I (o(Pra)) (15)

The maximum moment occurs at r = 0 and is evaluated from

M -D(a3v/ar t + v/r 3w/ar) (16)

We find

o(pna)J(p nb) o(Pna) I (p nb)

Mea = Po(ba) 2 (pa)
max max n

(17)

{ J°(Pna)! I 1 - Cos Wntl l(n)]

0 (p n [ P a) - -Jl 1 o 2 2 -+ l +V 1. 1° Pn a)

Stresses are computed from the maximum moments from

6M
max( 8)

max max

For computational convenience, let us define
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J0 (Pna) Jo(Pna)
{J0(Pnb) I(P a) 1 1 (pnb))(1 + Io(pna)

F (b/an) = n 1 n (19)F 2 -Jo p(Pna) 1+V 1 + 21 n a) (Pna)
L 0 (pa) n

Then

Mo P PaF(b/a)(l+) n Fn(b/a,n)(1 - cos w t) (20)

aax 0 2 n 1 (20)

and the maximum stresses are

ma 3(1+v)P (1)( b) F(b/a,n)(l - cos w t) (21)

Table II presents values of Fn for several b/a and several modes for !uateriale

with v = .3, and may be used to determine which modes contribute most signifi-

cantly to the stress history for any b/a. If b = a, the first mode predominates

and we find (for v = .3)

F1 (l,I) = .344 (22)

The stress history at the plate center is

= 1.34 P (a/h) 2(1 - cos w t) (23)

1. Response to a Single Pulse

We may deduce the response to a square pulse,

P = P 0 0 < t < (24a)

P = 0 t > T (24b)
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TABLE II F (b/a,n) for v = .3

b/a=.l b/a=.3 b/a=.5 b/a=1.0

n

1 .07601 .21608 .32204 .3,395

2 .02802 p06120 .04644 -. 03441

3 .01666 .02021 -. 00739 .01113

4 ,01120 .00286 -. 00679 -. 00515

5 .00788 -. 00316 .00175 .00286

6 .00561 -. 003 3.3 .00234 -,00178

7 .00396 -. 00135 -.00070 .00119

8 .00272 .00044 -. 00111 -. 00085

9 .00178 .OU109 .00036 .00063

10 .00106 00074 .00063 -.00048

II .00052 .00003 -. 00021 .00037

TABLE III F (b/a,n) for v = .2*
n

b/a=.1 b/a=.3 b/a=.5 b/a=l.O

1 .07903 .22482 .33556 .35990

2 .02815 .06156 .04693 -. 3431

3 .01669 .02020 -. 00737 .01104

4 .01121 .00287 -. 00681 -. 00513

5 .00788 -. 00316 .00174 .00285

for n > 6, values same as for v = .3
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by superposition. For t < i, Equation (21) applies. For t > T, we find

a 3 (l÷v)Po(1)2(k) I Fn(b/a,n)[cos w (t-i) - cos wtQ (25)

The maximum contribution for any one mode occurs when t = t , where

tan writt = -cot(w n/2) (26)

A useful approximation results for pulses of duration much less than the period

of the dominant mode,

W t = r/2 (27)
nc

and

0max = 3 (l+)0oh a )()FN(b/a,N)wN (28)

where the impulse per unit area, I = P 0, and N denotes the dominant mode.

For a uniform preasure, the dominant mode is the first and

aMax = 1.34 Io(a/h)*w1  (29)

For a nonuniform pressure, the first mode response gives

Wma = 3 1+v 1Total F I
3(1+v) --- b/a (30)bmax (-) 30)

Recall from Equation (13) that

w - (= a) "(_v) h =I i7 )(pn a)'k (31)
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Thus, the necessary modes for the modal analysis are governed by

(pna)Fn (b/a,n).

This result may be used for comparison with computations performed

4
by Holmes, Keough and Desmond for pyrocerams (E = 16.5 x 10' psi;

P = .0941 lb/in') v = .25, a = 4 in., h = 1/4 in. subjected to a pulse

P(r,t) = P e- (r/S)e-t/T (32)o

T = 20 psec, s = 2.75 inches, P = 1087 psio

Such a pressure distribution history gives a total impulse of

Itotal = J 2w(P(rt))rdr dt (33a)

0

= TP o0w2 l - rdr (33b)

0
= T0 20- e /)' (33c)

= (2.17 x 10-2 psi sec)wsl(.8795) (33d)

which is equivalent to a uniform pressure P over b = .938 s. For this disk,o

w1 = 6.127 x 10 rad/sec (34)

and the period is

2I 1.2x 10-3
T - = 1.025 sec = 1025 usec (35)

We obtain a maximum stress from Equation (30)

4 Holmes, B. S., D. D. Keough and T. P. Desmond, Monthly Status Report #2,
SRI International Project PYU-7259, Contract No. F29601-78-C-0041, August 1978.
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i2

a = 3.9(2.17 x 10-2 psi sec)(.8795)(6.127 x l0'/sec)max
Fa (.4645,1)

"(j3r) .645 - 30.6 ksi (36)

occurring at the quarter period of the first mode, 256 usec.

Values of the function Fn(b/a,n) and the product (pna)*Fn(b/a,n) are given

in Tables III and IV for v = .2. Neither is very sensitive to the value of v.

The function Fn was seen from Equation (21) to be useful in determining the

dominant mode in the response due to the step application of a uniform pressure,

and the tabulated values show that the dominant mode is the first. The values

tabulated as Table IV demonstrate that the response to a pulse loading which

does not flood the entire plate will contain strong contributions from a number

of modes. For example, in the case of b/a = .1, the contribution of the llth

mode is greater than the first.

2. Response to a Train of Pulses

Let us consider the response of a simply supported elastic plate of radius

a to a train of pulses of a particular temporal variation:

P(r,t) = P0 U(b-r)[l - cos Ut] for t > 0 (37a)

P(r,t) = 0 for t < 0 (37b)

This may be considered to approximate a train of "square" pulses, of duration.

T/2 and amplitude 2Po, recurring with period T = 2w/o, as shown in Figure 9.

Each pulse delivers an impulse

a T
= J P(r,t)2wrdr (38a)

o
or

2w/U

I= wPob J (1 - cos fAt)dt PoWb2T (38b)
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TABLE IV (pna) 2 Fn(b/a) for V = .2

b/a=.l bla=.2 b/a=.3 b/a=.5 b/a=1.0

n

1 .37797 .74113 1.07522 1.60483 1.72125

2 .83325 1.48629 1.82233 1.38935 -1.01556

3 1.23567 1.82646 1.50143 - .54562 .82101

4 1.54893 1.66943 .39704 - .94082 - .70896

5 1.75084 1.08918 - .70196 .38713 .63343

6 1.82879 .28746 -1.08477 .76221 - .57789

7 1.77999 - .47691 - .60673 - .31562 .53485

8 1.61179 - .97354 .26017 - .65797 - .50023

9 1.34082 -1.07376 .82247 .27297 .47162

10 .99163 - .78715 .69000 .58750 - .44732

).1 .39410 - .24977 .03482 - .24383 .42650
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The modal amplitudes are given by

phW + Dp n4W = f nt) (39)n n n

where

fn(t) W n P(rt)Rn(r)rdr (40)
n o

As before, we find N from Equation (9), and thatn

f(t) P 0 (1-cos rat) [• (p b) J(pna) b I 1Pnb) (41)fnt N n b J14Pnb Io(Pn a) P n I -

or

S w = C (1 - cos (t) (42)
n ph n n

where

Cn p (bpn) jPb) I-4Pb) _1 (43)n JhNnpnI0- na) wT

We first note the possibility of resonance iftDp
a D~n 

(44)
crit ph

or

Tri 4w/3(l-vI) ( (45)

crit E (pna)'
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It is to be noted here that in the pulse train modeled, T is the pulse spacing,

rather than the pulse duration.

For a long train of pulses, with T near to Tcrit,

Sn = n(1) + Wn (2) + Wn(3) (46)

W = E ( -)' (1 ) (47)
n 12p (1-v) pna ()

Cn

Wn(1)= (48)
n

W n = n -. --n C O S a t ( 4 9 )
n

nn =--',rn- 1

For long times, W (3) will cease to be important, through energy dissipation not

included in this analysis. We have, then, for such long times

w(r,t) n=l hNn(bpn) ";}T{J(pnb) Io(p a) I1(pnb)}

n=1 n n0 nI

-1 Cosat(51)
+) -.-w .) Rn(r)

where the eigenfunctions, Rn(r), are as given previously, Equation (2). We may

again compute moments, and stresses, finding the maximum stress at the plate

center (for long times) to be

Iareax = 3(l+v) (~)• • Fn(b/a,n)(1 + s (52)
n=l n
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At short times, a greater stress may occur at t t1 such that

(f01/wn - 2) sin w t sin fit (53)
n ni

of magnitude

I (cos ait - cos W n
a = 3(1+v) ;- T • Fn(b/a,n){(l - cos W t) + (4()/w - 1) (

n=l n

If f~ wn the forced response [Equation (54)] may become very large. If, in

fact, f = wN9 we find

CNW= (1 - WNt sin w t) (55)

N W N N

and

I WNt
a = 3(l+v) (1) • F (b/a,N){1 - - sin W t0 (56)
max bwTh N 2N

It is not likely that a target can be driven precisely at one of its resonant

frequencies; however, if this could be achieved, the stress level after M pulses

would be (for a/b = 1 and resonating the first mode)

max TF 1 (11) -2 (57a)

L-+ (V) I M

=1"( 2V • ('-) (Pla)&( h (57b)

(+ I M E IS1 (2.23h1 (57c)

*2w a' 2P (1-v7)
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For the pyroceram disk previously cited, a stress of 18 ksi would be achieved

in 100 pulses of .7 x 10.2 lb-sec per pulse, as opposed to the single pulse of

about 60 times that magnitude. That the resonance effect is not more effective

is somewhat surprioing. The explanation probably lies in the fact that the long

train of small pulses produces, even at resonance, what is essentially a static

response, whereas the single pulse of short duration allows the dynamic ampli-

fication (typically a factor of two) that is characteristic of impulse response.
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IV. A Fracture Criterion for Brittle Materials

A. Introduction

Experiments have shown that a ceramic material heated over some portion

of its surface will fracture. These fractures appear to originate at the rear

surface, under the heated zone. Consequently, we deduce that radial conduc-

tion, even in poor conductors such as ceramics, is sufficient to prevent large

tensile stresses from forming outside of the heated region, as described in

Section II.

Two other investigators have developed criteria for the fracture of

ceramics. Mechlosky assumes that stresses of magnitude

a - E (AT) (1)

are developed and that fracture occurs when a critical vAlue is reached. He

takes the temperature rise to be that of Goodmans2 premelting approximation

Ih I KAT --L (1 - 1)1 + a (t - tf (2)

where

t h- (3)61C

Solving for the time t to reach a critical stress, a , we find

Kt 1 11xv _o (4)
hTh I h cuEa

1 Mecholsky, T. T., et al., "Effect of 3.8p Laser Radiation on Ceramics",
Proceedings of 2nd Conference on Laser Effects and Hardening, NASA Ames,
July 1975.

2 Goodman, T. R. and J. J. Shea, "The Melting of Finite Slabs", Journal

of Applied Mechanics, Vol. 27, pp 16-24, March 1960.
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A factor of two has been introduced into the last term to account for the

radial expansion of the surrounding material, as in Sec:tion 11, and is needed

to produce Mechiosky's result.

Mechlosky assumes that the critical value of x is h/2, thus he finds a

fracture time

Itf 1 2k (l-v)o

"T- =24 + I ah 
(E

a

For sufficiently high flux (low strength) the right hand term become5

negligible leading to a dimensionless fracture time which is `ndependenz of

intensity.

Several observations regarding this criterion must be made. First, the

stress distribution assumed (Equation 1) is appropriate only for predicting

the compressive stress arising under two-dimensional constraint, or, with the

inclusion of the factor of 2, partial constraint. No out of plane deformation

is allowed. Stresses, in this model, are compressive everywhere and, as such,

the stresscs at the midplane would appear to have no particular significance.

Further, the model does not account for the observed origin of fracture at the

renr surface. Finally, the result is extremely sensitive to the value of x

employed. Nonetheless, it must be noted that quite good results have been

obtained with it.

3Laughlin has developed a means of estimating fracture time based on the

assumption that fracture will occur when tensile stresses on the rear face

reach a critical va.ue. He begins by using the exact solution for the

3
3Laughlin, W.,"Predicting the Laser Induced Thermal Fracture of Infrared

and Radar Transmitting Materials! Proceedings of First Classified Conference
on High Energy Laser Technology, Sen Diego CA, October 1974.
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temperature rise in a uniformly heated slab to predict thermal stresses,

under the assumption that the material surrounding the heated area constrains

all bending deform~ation but allows radial expansion to freely occur. This

corresponds to the mechanical boundary condition discussed as case II in

4
Section II.B.2. To account for melting , he computes stresses in the same

manner, with the temperature distribution taken to be that in a slab with

front face temperature fixed at meeting. As the slab continues to heat,

we note that the front face gradient decreases, and thus, the incident flux

is treated as if it were reduced. Laughlin has also obtained generally sat-

isfactory results with his method.

While Laughltn's model appears to have a firmer basis that that of

h llechlosky, two questions remain open. First, the mechanical boundary con-

dition at the edge of the heated zone, and secondly, the treatment of the

influence of melting on the stresses in the solid portion.

B. The Influence of Mechanical Boundary Condition

L~it us consider a section of a structural member to be subjected to a

uniform absorbed intensity over a circle of radius a, the remainder of the

structure remaining at the ambient temperature which, for convenience, will

be taken as T =0. If we neglect the consequences of radial heat flow out

of the heated region *, then the temperatures for r < a are given by Equa-

tion (18) of Section II.B.2. or, in terms of a coordinate system in the

midplane of the plhite with the heated face being z = h/2, by

Recall that it was shown in an earlier section that radial heat flow
does not reduce the magnitude of stresses within the heated zone.

4 Laughlin, W. T., "Predicting the Las.er induced Thermal Fracture of
Partially-Transparent Materials (U)", 2nd DOD Conference on Laser Effects
and Hardening, NASA Ames, July 1975.
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I at l b h . ~ ~ z l z
I a )n I aT(z,t)* 7- _k 2T h 2 hj 24

p

2 (-h)n -Kn•ivt/h 1  ( 1
- T COS h( +

In what follows, a dimensionless time

T = t/h 2  (2)

will be used.

For r < a, the displacements and stresses are found to be

a =0 (3a)zz

Sa 1-V 1[CZ + C2 -aT] (3b)°rr = eel- I-2

U = C Zr + C2r (4a)Sr 1 2

.UO = 0 (4b)

where the constants C1 and C2 are to be determined from the boundary condi-

tions on r = a. The four possible boundary conditions arising from the edge

r = a being free or constrained against in displacement and free or con-

strained against rotation were explored in a previous section.

We now assume the line r = a, circumscribing the heated zone, to be

elastically restrained by the surrounding material, i.e., on r = a the in-

fluence of the surrounding material may be represented by moments and forces

per unit length

M r = B+ (5)
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where

and

ar +
r=ahe

h/2

r -h/ 2  rr +()

r=a

and

Fr =CTa (8)

where

h/2
Fr '-' rr dz 9

r=a

= r1 (10)
P ir=a ,z=O

Further, the displacements and rotations of the heated region, on the line

r = a, must match those of the exterior region. Here, Ur and are ther

inplane and out of plane displacements, respectively in the exterior

(unheated) region.

The constants of (3b) and ( 4 a) result from matching displacement, slope,

force and moment at r = a

S= U r(a,o)'= C2 a (1la)

aU
- =r (a,O),= -C a (llb)

az1
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h/2Ch' EhI2
"M = h zrr (aZ)dz= 1 [-E -- 1 Lb,2 zTdz] (liC)

Jh/2 -h/2

Fr r(az)dz - [ c2 h Tdz
r -h/2 (l)/2

These four equations, together with the two stiffness constants, defined by

Equations (5) and (8), permit the constants C1 and C2 to be determined. We

find:

h/2
CJ Tdz._h/2Td

C= h - (12)
- aCT

1 [r [h/ 2

=h' (-v) [ -hi2zTdz] (13)
12 + aC -h/2

The four cases considered in Section II.B.2. may, of course, be recovered by

setting to zero, or infinity, the two stiffnesses, CT and CB, as appropriate.

We first consider the flat plate of thickness h surrounding the heated re-

gion. We provide that the elastic constants, •, •, may differ from those of

the heated region so that a thermal softening effect may be included, if

desired. The inplane displacements and stresses are those of the Lame solu-

tion, as used previously (Section I1-B).

U = Ar .* B/r (14a)r

U0 =0 (14b)

a =0 (15a)
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LFor a finite circular plate, with F = 0 on the outer radius, r =b, we findr

B = ATB--I)b (16)

These results may be combined to deduce the stiffness constant for the

inplane motion, C. Using Equations (8), (9), and (10), we find

h -( -~ -T)

C = w a (17)
0 a (+, + ( )

and

ala fh/2
[(I+;) + (1-;)r2] K Tdz

A -h/2 (16)

S(1+;) + (1-;) -9 + (1- 0 a"

In order to facilitate comparison with a fracture criterion developed by

Laughlin, it is of interest to determine the stresses arising in a finite

sheet of the same modulus, with the central region completely constrained

against bending, CTB U EquIn this case,

[(l+v) + (1-)b-]a a J Tdz

C l2 + bt -h/2 (19)

From Equations (12) and (13), C I 0 and
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E c [(l+v) + (1-071 ]h/2

EG tl+~) (-v~-] h T d2 T) (20)
rr I-v 2h J-h/2

As b * a, Case II of Section II-B-2 results. As b + m, we find

Err ('+V) I h/2 Tdz - T] (21)
rr -1-v 2h _h/ 2

In general, we should not assume that the surrounding, unheated material

will suffice to completely constrain the edges of the heated disk from

bending. Rather, the material in a < r < b will deflect as an elastic plate,

free on r = b but with applied moment on r = a. The governing equation for

the axisymmetric lateral deflection of a thin, unloaded elastic plate is

VOw = 0 (22)

has solution

w = C lnr + Dri (23)

Strains, stresses and moments may be deduced as previously, Section 1I-C,

Equations (I) to (4), to yield

U (r,z) -z( + 2Dr) (24)r r

From which

Oar - 2 - (1-;) + 2D(l+ý)] (25)

Tho moment, Nr, is found to be

81

L2 1'ý



12~ +

M C 1 2D•- •- (26)

Since the moment at r = b must vanish, the moment at r = a is found to be

=+!Who C (l(27)

The slope at r : a is seen Lo be

dw C -a
dr - C v ) (28)

from which Equation (7) may be used to deduce the stiffness as

t~h' ( -•-
C= T (29B +2'(i+)a a1 (29)

Hence

h/2

F 12 -h/2 (30)
[l (lv (+-•)a'

(1+; + (1-;)

In the case of an infinite sheet with elastic properties on r < a, these

reduce to

12 (1+ ) (a h/2 zTdz} (3)-1)
2I - hs 2 (3

with

C (1+ ) ah/ 2C - 2 h a " - T d z . (3 ,2 )

2-h/2
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In order to evaluate the stresses from Equation (3b), we need compute

certain integrals of the, temperature distribution

hi2 I hr Td a

""2 =d {2hh} (33)

"zTdz - Iah- h 8h' o e-n'W'r 1 (34)

J-h/2 2k 1 7-odd --

Let us examine the following ca.,es:

A: The edge r = a is completely constrained against rotation, but is only

partially constrained against lateral expansion by the radial deformation of

a finite, circular plate. The constant Cl, as noted previously, is zero and

Sa2
(l+v" + (l-v) a h/2

C2 = 2 Tdz (5
2 L 2-h J~/2

The stresses in r < a are

Ea I aa

rr = 8 - 1-v 2 [{(l+v) + (1-0) b- X - c

{() + - + 4 (_1)n Z 1h h-2 e cos +w~ Ir)--] (36)

For this boundary condition, the maximum stress occurs on the rear face

(z = -h/2) and is

a a 1 -V) la 1 1( _n .(a -x I [(I -T) + L •"ha (37)
max -v k 12 4 b(l - +

n

Figure 1 displays graphically this equation for three cases: a/h 1 (which

83



corresponds to Laughlins criterion); a/b = 0 (which corresponds to the infi-

nite sheet with a heated spot and an intermediate case (a/b = 1/2), all with

S= .3.

Qualitative differences between the two extreme cases are seen. For

a/b = 1, the rear face stress increases monotonically reaching a maximum

(as t + -) of

I h 1 h
Eu a 1 Ea a

%max - - x(k 6 1-v' k

On the other hand, the elastic constraint caused by the infinite sheet leads

to the eventual (T .. 1/2) development of compressive stresses on the rear

face, with the maximum tensile stress occurring at T = .175, of magnitude

I h I h
a a (0.07) Eu a (39)
max k 1-v k

From the results given in Figure 1, a failure time can be predicted. If the

case a/b = 1 is used, Laughlins re ý Ats will be recovered. It is interesting

to note that for times in the region where most failures have been observed,

that the case for a/b = 1 overestimates the stress by about 50% or equiva-

lently provides an estimate of the fracture time which is about 60% of that

which would be obtained if the a/b = - results were to be used.

Let us now consider a second case: where the line r = a is only per-

tially constrained against both expansion and rotation by the surrounding

material. C2 is as before, but Cl is no longer zero, for the bending

deformation will now take place. Using (33) and (34) in (35) and (30)

(taking E = • and v = •) we find the stress (Equation (3b) to be
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I h-
Ea06 a 6zrr Ie(-v)2k{ R -n

odd

II

3 1 (40)l)n n I- n h 1s-, +nw e 2 (40)h

whe re

aZ

R = (1+v) + ( a-') (41)

For a = b, R = 2, and we find, for long times,

arr =060 - E a a ( - (f)2} (42)

which is the result previously obtained for the free plate. For b = -, the

long time stresses are

I.

O ~ ~ E =09 1---~ i -h ~ Z.Ž) lv (43)

Evaluating Equation (40) at the rear face (z = -h/2), we find that

lh
2Em Iai ha3

0rr rear 000ea (-v) a 4 L(1+v)+(l)°rr = %e - (1-v) - [(+)+(-) ]
rear rear

1 8 e*!W (lv) a 2 1172 7 1 -nV-1 'O +T2

odd~

I (_,)n

e-n W!j} (44)

which is seen to differ from Equation (37) (the result when bending deforma-
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tions are constrained) by the inclusion of the term

Z~ 1+V + 0l-0 t) 12 ;T~
b odd

Stresses at the rear face, for short times, are given in Figure 11 and are seen

to remain compressive. Long time values (Equation (42) and Equation (43)) are

also seer to be compressive.

Thus, we see that properly accounting for the mechanical boundary con-

dition at the edge of the heated region shows the stresses on the rear face

to remain compressive.

Tensile stresses will develop in the interior. It is to be recalled from

Chapter 11 (Figure 6) that a uniform flux over one face of an infinite sheet

leads to compressive stresses on the outer surface and tensile stresses on

the centerline. These results are reviewed as Figure 12a. If we now consider

a heated radius a within a disk of outer radius b, the constraint of the

unheated area superposes compressive stresses, leading to the time history

shown in Figure 12b (for a/b + 0). Small compressive stresses remain on the

center only for short times.

Thus, if fracture due to tensile stresses on the rear surface is observed,

the fracture must originate outside the heated area, according to the mechanism

of Chapter IIB.

The stresses in a disk of radius b having an axisynunetric temperature

distribution are given in Equations II-A-19 and 20. For a temperature distri-

bution

T =T 0 on r <a (46a)

T=O0 on a< r <b (~b
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we find

a = E*T( 4 -2 )/2 on 0<r<a (4<a)°c rr .. .

=E*T (7- )/2 on a < r < b (47b)
rr -b0

and

aee = EaTo( + )/2 on a < r < b (48)

Thus, the greatest tensile stress occurs at r = a, Just outside the heated area.

For no losses, and no radial conduction, the average temperature on r < a

is

T0 = a t (49)
p

and the corresponding average tensile stress for r = a increases linearly with

time as

Ela (a2 + _t

Sa - (l 1- (50)S~max P Cph •

For the infinite disk, Equation II-B-l-12 is recovered. Radial conduction will

lead to a reduction of these stresses, in the manner of Section II-A, where

asymptotic value- for long times have already been given. It should be roted

that these are not the only stresses developed. Continuity of bending, as well

as in-plbne deformation, will give rise to a moment H and further stresses

aogo* These will not be considered aB they will quickly decay with distanceinto the unheated portion. Rather, the influence of radial conductivity on
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tersile stresses for r > a will be explored. The stress time history for K 0

is given by Equation (50). For non-zero K, a numerical procedure was developed

for the transient on dimensional radial temperature distribution in a finite

* diak. Once values of temperature were found, stresses were computed from

S�Equations Ii-A-19 and 20. Typical results for the transient circumferential

stress are given in Figure 13. Here the heated radius was taken to be 4 cm on

a disk 1 cm thick of outer radius 9.73 cm. C was taken to be unity (I Joule/

gm° K), P = 3 gm/cm5 and two values of conductivity, leading to K = .1 cm'/sec

and t = .01 cmt /sec, were considered. The radial conduction is seen to reduce,

but not eliminate, the development of the tensile stress.

The influence of conductivity is more readily seen from the results pre-

sented as Figure [4. A family of hypothetical materials were considered, all

with PCp = 3 Joule/cm' 0 K. A disk 9.73 cm in radius and 1 cm thick was con-

sidered to be subjected to a constant absorbed flux over a central circle of

4 cm in radius. The time to generate tensile stresses of two values is

presented. From the results it can be seen that tensile fracture outside

the heated region may indeed occur, and that the time to produce a given stress

is increased by thermal conduction.. Thus, heating a uniform disk will produce

significant tensile stresses outside the heated region, and these will provide

the failure mechanism for a brittle marerial.
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C. Influence of Melting

When the heated surface of the slab reaches the melting temperature, the

temperature distribution is no longer that given by Equation (II.B.l.), and

the stresses, as computed in the previous seztion, are no longer applicable.

Since the problem of detrm'ining the temperazure distribution is, in such

cases, nonlinear, we must resort to approximate methods. The heat-balance

integral method of Goodman and Shea is applicable in such cases and will be

used to determine an approximate solution to the one-dimensional heat transfer

problem with change in phase, and the thermal stress will then be determined

from this approximate solution. It will prove useful to recognize two crit-

ical distinctions, first, whether the slab is thin or thick, and second,

whether the melt is completely retained or completely removed. A slab will

be regarded as thick if front face melting begins before the rear surface

temperature changes and thin when the converse occurs.

1. Melting of Thin Slabs With Melt Retention

For temperatures below melting, we assume the temperature distribution

in a slab of thickness t absorbing a flux I on x = 0 to bea

T a(t) + b(t)x + c(t)x' for x < 6 (1a)

T =O for x > 6 (Ib)

where 6(t) is a thermal penetration distance. On = 0,

Ia = -k=T= -kb(t) (2)

on x - 6

•T

T 0 and 2- = 0 (3)
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hence

16 (4)

This approximation cannot satisfy the differential equation exactly but only

in an average manner. Thus, we require

Jt k PC DT (5)

kiT- k~ ýL I aPC (6)
ax - a 1 a 2k 3

which may be integrated to give

6(t) = 6Kt (7)

since 6 = 0 at t = 0. The time to front surface melting is then found from

(4) to be

2kT(_ )
t _ 2- T (8)
M 6k I

2kT
and is valid if 6(t m < . This notation suggests the introduction ofm- -

a dimensionless measure of the applied flux. Let

i U (9)
(2kT)

then for i > 1, melting begins before the rear surface temperature changes,

and the slab is thermally thick.

We first consider the case i < 1, the case considered by Goodman and
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!vim 0

Shea with results used by Necholsky . At some time t lesn than tmI given

by (8), the penetration depth 6 reaches x = 1. The assumed temperature dis-

tribution, Equation (4), is no longer appropriate. The new boundary condi-

tions become

2T-ak-7-- on x =0 (lOa)
a a

0 -'-ax on x=. (lOb,

ax

From (7),

tt- 6k (i

thus, the approximate solution for t > t 1ecomes

T s (t) - x + -2k-- x' (12)

Again, we satisfy the averaged differential equation, this time obtained by

integrating through the entire slab thickness

k OT1 - k 11 o = pCpTdt pCa-4 (13)

The resulting differential equation

aa C (14)
p

is easily solved and substituted into (12) to yield the approximate tempera-

ture distribution
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ItT= lat + -C 1 (15)

p

The constant of integration, C , is determined by requiring that the tempera-

ture 1istribution for t > Lt (Equation (15)) matches that for L < t8 (Equa-

tion (4)) when A =, The result is

T = a (t t 2 ) + A ( (16)

p

This is Equation (2) of IV.A.
It is convenient to replace real time, t, by a dimensionless time,

kt
2T (17)

Then,

T a (T T 1- (0 - X)l

_1

6-

This solution is valid until the front surface reaches melting, or until

kT
m 1 1 1-=• + - -= (20)

a

where it is to be recalled that i < 1.

If the flux is continued at this same value for longer periods of time,

a melting front will form and propagate into the solid, leaving behind molten,

material, with thermal properties we will denote by a subscript, m.

We again assume parabolic temperature distributions, measured above and
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below ielting, i.e., T ÷T + U and T - T + U, respectively

U - d(t) + e(t)x + fVt)x0 on 0 < x < a (21a)

U - a(t) + b(t)x + c(t)x' on < x < (21b)

with boundary conditions on the front and rear

-k U I = (22a)
Imsax 10 a

-k U 0 (22b)

On the melt line, x = s,

U =U =O (23)m

and

k m - k!U- =PL-d (24)am x ax ss t

The first four equations enable us to reduce each of (21) to two unknown

functions, f(t) and C(t) in

I

U= A (s - x) + f(t)(x' - st) (25)
U k

m

U C(t) {2((s - x) + (xz - s2)) (26)

to be determined by the heat balance integral. The flux matching condition,

Equation (24), then provides the means of determining the unknown time history
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of the penetration deptih, a.

Let

U dx f(t) 2 s|m m k 2 3) (27)

,L2 2

Ls Udx= C(t) {-31 + 2si" - 2s'W. + 3 (28)

Applyijng the heat balance integral on

s au s au

okm dx = " 0 C dxo o -r0a m pm (29a)

and

k jr dx a- C dx (29b)Js st *pm

produces

xaU j p do

k -"m + I= - (3dom ax a m pm drt (30a)

and

- 1U do PC

akx I s t (30b)

But

au = C(t)2(s-t) 3-(t) (31)
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and

u I I 30a m
...!~ ~ + f(t)2s =j - (32)

x m m

Substituting, we arrive at

PCp •! _- (s ) (33)

do 31 3k 8
0 a - m m (34)

m pm dt 2 (4)

I 3km 0 m(t) ds(3)ds
- + + (s L (35)

At the onset of melting, t = ti, s = 0 and e = 0. The temperature distribu-

tien in the solid,

U = C(t )[x' - 21x) (36)

must match that previously given by the premelting solution, Equation (16).

Therefore

C(t) = a (37)

and

e(t _a (38)

Introducing the same new variables as Goodman,

o =(39)

100



p C 6
a) = 2!Lmp!L"-2T (4o)

p m

= 0- (41)
m

k
T = •-f(t - t (42)

C T

= _M (43)L

K

m (44)
K

and the dimensionless flux, i, as previously defined, we arrive at

dv 3v (45)

T (- 3( (46)

I do 3VW 3v(47)
-P TT -i ) +2

2i
with o(O) = 0, w(O) = 0, v(O) these are the same equations given by

Goodman, who has given approximate solutions obtained by a perturbation

technique.

We are now in a position to develop expressions for the stresses devel-

oped by these approximate temperture distributions. Three time ranges must

be considered. To simplify comparison with Laughlin's results, we will con-

sider the uame boundary condition, i.e., no inplane force and no bending

displacement. Hence,
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r=000 = E (C x - aT) (48)°rr g -

in the solid region, and O a 0 in the molten region. Hence,

r =a - Tdx -T] (49)rr gee 17v E-s

Prior to the time, tj, when the rear surface temperature changes, the temper-

ature is

16a (l
T 2k (1 - for 0 < x < 6 (50a)

T = 0 for 6 < x < (50b)

with

6(t) = /6Kt for t < t L2 (51)

Eu a lv[6Kt -X )2 on 0 < x < /6Kt (52)
rr 0 V 2/6Kt

It
EaIa

0rr =0 ee=--• on /bKt < x < (53)
rr ~ P1

p

Thus, the maximum tensile stress is at the rear surface and rises linearly in

time reaching a maximum value

Ea -a at T (54)
max 1-v 6k 6

1

For T > , but before the front surface melts, the temperature distribution

is
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T a ( + 2 (55)
p

and the stress distribution is

a ae I-• [ (l X),] for 0 < x < (56)

The maximum tensile stress is again found on the rear surface and has value

Ect a 1 <

0max - 1-v 6k 6or< T <--- (57)

Where it is to be recalled that the crl.terion for a thin plate was i < I.

Thus, we see the matimum tensile stress is constant during this second phase.

At -r = - - , melting begins at the front face, Assuming the stress in

the melt to be zcro and using the approximate temperature distribution

T T + . (2s -. x) + ( - s 2 ) 8(t) (58)
m 2 (s--L)'

The stress is

!-(x - s)(2L - x - s)Em

((59)

and on the rear surface,

a! a Ea6=m(- (60)
0rr °8 2(l-v) (-7) -20-v) (-

Using Goodmans first term to evaluate the change in v and a immediately after

melting, we discover that the numerator is reduced as 1 - C1 T while the

denominator decreases as I C 2 Hence, when melting begins, the stress
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is reduced to

EII

Cmax [1 3T M )6k(l-v) (1

Since the rear surface stress depends only on v and o, we note that its deriv-

ative is

do EaT M ;

dre 2(1-v) 1- I (62)

Substituting the differential equation for •, we find

dorear - m 3v [- (1-a)(
dr 2(0-) (-o) 3 (63)

Since v begins (and remains) negative, and a < 1, the derivative of the stress

remains negative, as can be seen from Goodmans computations of o(r) and the

0

average value of a, which may be bounded above by the average recession rate

with complete removal, o < 4i/3.ave

Thus, within the limits of the assumptions made, 1f fracture does not

occur before front surface melting begins, it will never occur. To recap

the results for thin slabs (i < 1) in terms of dimensionless time

kt
(64)

and intensity

2ka (65)
i2kTmm

The tensile stress on the rear surface is
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2gcaT
m

a ma -- iT forO0< T< 6 (66)

a 2~T 1  for -< T< -(7

max 1-v 6 6 21 3

3 1 1
a -f- -& [T- 33ir for T + 1 << 1 (68)

max 6 21i

If we let the tensile stress required to produce fracture be act and define

a 0 (1-0)(9
c EciT

the fracture threshold is i =3a c, and fracture times for two hypothetical

materials are as shown in Figure 15.

It should be noted that all of these results are for the boundary con-

3
diticon considered by Laughlin , i.e., no bending deformation allowed, and no

inplane constraint forces allowed to develop. Other boundary conditions will

produce different stresses, as will be considered in a later section.
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Figure 15. Failure Times for Thin Slabs Wi~th Malt Retention.
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2. Thermal Stresa in Thick Slabs, with Melt Retention.

In the previous section, the approximate tempsrature solution

given by Goodman and Shea was used to predict times to fracture

in thin slaba or good conductors where the rear face is reached

by thermal penetration, and hence, the maximum stress develops,

before front face melting begins. For poor conductors at high

flux, however, the front force will melt before the rear surface

heats. In such a case, the maximum stress, and hence, fractures,

may occur after melting begins.

We therefore require a solution analogous to that of Goodman

and Shea, applIcable to the thick slab geometry. Let us assume
the one dimensional heating, by absorbed intensity Ia, of a slab
of thickness h. We denote by the subscript va the thermal proper-.

ties of the molten state, and the depth of melting by s.

On 0 < X < aUm a UmIKm -- m-

ax2  at

on s < x < s +6

x 2  t

The boundary conditions are

a1Um
- km -•- Ia on x -0 3a

""'1 k ,iim + k x - s 3b

km ax -s xnPLajoxns

Um - U - 0 on x - s 4a

ax
U =0 on x- s + 4b

x-94+6

U " w Tm on x - s + 8 4c

where Tm is the temperature at which the phase transformation

of specific heat L occurs, and temperatures are given by

T m Tm + Um on 0 < x < a 5a

T - Tm + U on s < x < a + 5b

The initial conditions are the instance of front faca melting,
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U - 0 @ x w 0 and t - to 6

irn0 @ t - ta 7

U - Ta + -x) 2  @ t- t 8
2k63  m

t a 6
2k . . ...

2 kV
'a

where
6 " 6m -6eC tm 2k LM @t - 9

I's

and the initial distribution is taken as the approximate

solution prior to meeting.it Following Goodman, we choose the temperatures distributions

to be parabolic, i.e.,

SU - d(t) + xe(t) + x 2 f(t). 10

Employing the boundary conditions; 4a-c, we find

' TmU [2 + s82  - 2x (s+a) + x 12.• 6 2

or T Tm(- + Tm 12

which more clearly displays the physical significance of the
tl temperatures ahead of the melting front in terms of the two

parameters, the melt thickness a, and the penetration depth, 6.

The integral

e -f Udx = Tm 2 • - Tm 6 13

will prove useful. Physically, it is a representation of the

additional energy required to bring the material within the

penetration depth to melting.

We also choose a parabolic temperature in the molten layer,

U3 - a(t) + xb(t) + x 2 c(t) 14

From boundary conditions 3a and 4al

Un " C(t) (x2--2) - (CXS) 15
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The integral a a2

fs UMdX - 2 * c(t) 16
0

represents the energy in the melt, above that required by the

phase transformation. At t - 0, Om, 0.

We now require the satisfaction, in the average, of the heat

conduction equations, (equations I and 2, through averaging

over each domain

a au s au
f KM - -!ýd x - f -dx 17a

S s

Differentiating 13 and 16, we note:

and

dOm " a UM + u dx 18b

Hence K •:: dI?7 P +f"

Dirniaig__ad1,w no9e
IC .3U + K j m I a/Om 9

tax K dt

and

dO (- 6) T + 19b
ax dt

where equation 4b and 3a have been applied. -Substituting 11 into

19b leaves, as a final form of the averaged energy equation in the

solid, that

Tm dO d

+2KU Ta I.+ (4 + d i) T3  20a

6 and 4 are related through 13, thus

e - - 2/3 Tn 6 21
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Combining 15 with 19a

dO
2 KIM a c(t) "m 22

which may be combined with 16 to give the a final averaged energy

equation for the melt

Iasi 0 +1 1 do2 23a

*KU a K s - _

We may also eliminate the gradients in 3b to obtain the equation

for the energy balance on the melt line as

Ia - 2kTM pLs 24a

Equations 20, 23 and 24 form a system of three first order, non-

linear, coupled equations which must be solved in order to find

the temperature. Through t4e following substitutions

T - K (t - t3 )/1
2  25

P - CpTm/L 26a

v - Km/K 26b

i - Iat/(2k Tm) 26c

we arrive at the same dimensionless variables uised by Goodman

a = s, 27

0 #-e(TM 1) 28

w (K k3 em)/(k Km Tm Z) 29

The differential equitions become:

-, 6 (1.p) w • . + 20b

3v a 2

w- 3 0.- Vw/0 2 ) 2 3b

S{ + -i) 24d
02

The initial conditions (.T- 0) are

C - 0 30a

w - 0 30b2
V 21 30c
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It may be demonstrated that if T is sumCe, that

a - 6pi(iT)2  31a

w a (6pi)2 (iT) 4  31b

-2 3 4iT + 12ti(iT) 2  31c

The actual tewperature distribution in the solid is obtained from

12 as

T T ( + 6 - X)2 32

where s and 6 are obtained from 27, 13 and 28. Stresses in the
solid region depend on the mechanical boundary conditions at tlhe

edge of the heated region. If we again assume that bending dis-

placements are completely constrained, then

o (Cl - GT) 33

The requirement of no net axial force leads to

Eca 1 r Tdx - T} 34
s

This is found to be

Ect T 6_ _ _ _

1-T (.- - 6 - ) for x s+6 351-V M .- 8s-----) (

a I c- ( 1 for s+6 < x <9. 36

i-v 1.-s3

The maximum tensile stress occurs on the rear face (x X.) and is

EaT
a m V 37
rear 2(l-v) 1-o

3valid until - - v < 1-a. The greatest possible stress is

EaTm
amax= 3(1-v)

For small time

EciTa m f I + 21 - 6pi(iT) 2 + 2p(iT) 2 } 38
rear (1-0j) 1
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The dimensionless time at which melting begins is (from 9, 25

and 26c)

1

and the stress at that time to

RaT
a ~ 39

*rear 1-v 3U

We note that for a 1, the threshold of applicability of these

results for the thick slab, that the maximum stress predicted

Is the same as for the thin slab, Nowever, we also note an

important difference. In the case of the thin slab, we found

that the stress reduced after the onset of melting. In the

thick slab, the stress will continue to increase as we may note

from Iqtiation 38. Hence, a numerical solution of the governing

system of equations is necessary.
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3. Thermal Stress in Melting Thick Slabs
With Instantaneous Melt Removal

Let us now consider the case when the melt is removed as it forms.

Again, two cases must be considered, depending on whether the melting be-

gins before the rear surface chauges temperature (the thick slabs) or after

(thin slabs). For the thick slab, we assume a temperature profile

T = Tm [(1 - (l'!)a] for s < x < s+6 (1)

T = 0 for s+6 < x (2)

Here s is the instantaneous location of the front surface measured from its

original location. This temperature profile is appropriate only after front

surface melting begins, i.e., for

2kT
t > tin mk'-)' (3)

m6k I

Again, we let

6+s 2Tm6

e 6 Udx 2 - m (4)
3

S

where U = T - T . Requiring the satisfaction of the differential equationa

averaged over the instantaneous thickness leads to

-k~L Ts sP C dx= + T(; +) (5)ax at

The melting line coincides with the front surface and an energy balance leads

to
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I + T I =1pL; (6)la~ka

The thermal gradient on x = s may be evaluated from

k8T 2kT3x I 8

Application of Equation (4) and the elimination of the gradients leads to

two equations

* 4k mPLs I + (8)a 3 0

pC - p(L + CT )s = -I (9)
p2 pm a

In terms of the same dimensionless parameters introduced previously, we find

dv 8 1d= 4i + 1 (1 + P) -

do 42(
dr = 2- i + 3v

Again, the initial conditions (t - t 0= ) arem

= 0 (12a)

v 2 (12b)
3i

In this case, we note the first equation to be uncoupled. The substitution

Ii
1 = C[l + g(t)] (13)
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is found to be convenient. With

C 2 (3+P) (14)

and the change of independent variable

8 6 212T
y (1+i) cOT - l iT (15)

where

=T T (16)
m

then

d g(l + g) (17)dy

with initial condition

g(o) = (18)

This equation may be integrated to yield

Y = +- + In g(l+U) (19)

Substitution into Equation (11) then yields

.1+1, _____ .

3pio = a.- (-L+g) + in ( '+a)) (20)1+g l+A

This, together with

-2(1+u)
vi = 2(1+j) (21)

3ii(l+g)
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enables the solution to be computed in terms of the parameter g, which is

in turn related to y, and hence T through (19) and (15). Pertinent values

of solution parameters are presented as Table I.

For the same boundary condition as was considered in the previous sec-

tion, i.e., no bending displacement or inplane force, we find

0 =a +r E - Tdx - T] (22)
00 rr l- IsJ

Of particular interest is the maximum tensile stress, which again develops

on the rear face, x = 2, where T = 0 for times over which this thick slab

solution applies. Hence,

EaT
max 2(l-v) (23)

In this case, a power series solution, valid for small time, shows the stress

at the rear face to increase after front face melting begins, since both v

and a increase in magnitude.

Values of a dimensionless stress

amax (-0)
aa 1 v (24)

max EaT 2 -am 1

may be computed for any i > 1.

It Is to be recalled that the temperature distribution becomes invalid

when the tht.-mal penetration front reaches the rear face, or

a + (25)

This condition occurs, for any i, at a time y when i = i c as determined from
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TABLE I. SOLUTION PARAMETERS COMPUTED FOR V=2.

3
& -vi io i= 2

.5 0 .66667 0 1.0

.45 .04847 .68965 .000i15 1.0349 .000401

.4 .10653 .71430 .0018817 1.0733 .00175

.35 .17724 .74074 .004848 1,1160 .00434

.3 .26516 .76923 .010005 1.1639 .00860

.25 .37749 .8000 .018472 1.2185 .01516

.2 .52648 .83333 .032192 1.2822 .0251

.15 .73537 .86955 .05493 1.3593 .0404

.10 1.0569 .90909 .095335 1.4590 .065

.07 1.3604 .93460 .137427 1.5394 .0893

•.05 1.6602 .95238 .18146 1.6100 .113

.03 2.13M3 .97087 .25415 1.7105 .149

.02 2.5195 .98039 .31534 1.7859 .177

.01 3.1931 .9901 .42437 1.9095 .222

.001 5.4768 .999 .802182 2.302 .348

.0001 7.7786 .9999 1.18535 2.685 .441

.00001 10.081 .99999 1.56906 3.0690 .511

1.02 x -7
1.02 x 10 15.667 1.0 2.5 4.0 .625

4.9 x 10-10 20 1.0 3.2222 4.7222 .682

2.53 x 10- 21.6667 1.0 3.5 5.0 .70

2.24 x 10-14 30 1.0 4.8889 6.3889 .765

3.85 x 10-18 39.6667 1.0 6.5 8 .8125
1-18

1.014 x 10 40 1.0 6.5556 8.0556 .813

2.7 x 1o23 51.667 1.0 8.5 I0 .85

117



the appropriate column in Table I. At that instant, the stress is a maximum

and has value

1
amax = (26)

independent of i.% Thus, the maximum stress obtainable is independent of the

dimensionless intensity, and v as well, but the time required to generate

the stress will be seen to depend on the intensity. The column labled a

in Table I denotes the fraction of the slab which has melted at the instant

when the stress achieves the maximum value.

Figure 16presents the time history of the evolution of the rear face

tensile stress, for various values of the dimensionless flux. In Figure 17.

the failure time as a function of intensity is given for materials of various

ultimate strength, a , where

a jT (l-v)
u - EaT (27)

m

One notes what at first would appear to be an anomolous increase in fracture

time with intensity. This arises because higher intensities confine the

penetration depth, thus less thermal force develops. Further increases in

intensity cause more rapid melt thru, thus reducing the load bearing area.
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F.Smmr and Discussion
strss n slidelastic materials subjected to high intensity laser radiation.

Teasrtoofsome fatoofteicdneerywsfound to produce

thermal stresses of significant magnitude , but these stresses are character-

istcalycompressive in the region heated by the beam. In a ductile material.,

suc steses ayproduce failure in a shear mode, but this is less likely to

occur in a brittle material. Rather, it is the significant tensile stresses

found outside of the heated region which are believed to be the more significant

in the generation of failure. Radial conduction of heat was found to diminish,

but not remove, these tensile stresses.I Such thermal stresses are generated by both CW and pulsed lasers. In the

latter case, the duration of the pulse and the time between pulses is usually

small compared to the thermal diffusion times; thus a repeated pulse may beI treated as an energy source of the same time averaged intensity. This approx-

imation is especially appropriate in the case of poor conductors, such as

glasses and ceramics.

In addition to the stresses developed by the absorption of energy by the

solid, the absorption of energy in the medium adjacent to the solid produces

an intense pressure field through the mechanism of LSD or LSC waves. The

mechanical response of an elastic plate to such loadings was also considered.

This mechanism is inherently of much greater significance in the case of pulsed

* lasers because of the higher peak intensities. Consideration of the response

to a pulse showed that the response of a short pulse, acting over a small

portion of the plate, can be accurately determined only if a large number of

the plate modes are considered in the response. While the peak stresses occur
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at the center of the spot, the stresses elsewhere in the plate remain signifi-

cant.

The stresses rroduced by these two mechanisms are such that superposition

occurs in the case of a repeated pulse laser of high intensity. The thermal

stresses due to the time-averaged intensity increase with time. At later times,

the peak values are to be found at greater distances from the heated area. The

oscillating stresses resulting from the front surface pressures will diminish

in magnitude with distance from the spot center. While oscillating at the "rep"

frequene, of the laser, the amplitude of succeeding peaks will be relatively

constaot. Thus, the superposition of the two stress generating mechanisms may

well produce failure after a number of pulses have occurred. Failures occurring

in the first few pulses may be expected to be due primarily to the oscillating

pressure fieli and therefore at or near the spot center (barring stress raisers

at the stipports). Failures which occur after a number of pulses, on the other

hand, r-.y a expected to be due to the development of the tensile thermal stress

outside o. che heated region. Thus, the failure may originate outside of the

heated region.

Other fai ure mechanisms were given some consideration. Tensile stresses

were found :- be present in the interior at early times, but the reported

significance of surface flaws as failure crigins is not accounted for by these

stresses. Partial melting under the spot may be of significance. A preliminary

investigation of this possibility was conducted, with the scope limited by the

mechanical boundary condition considered at the edge of the melting region.

Briefly, the failure mechanism deserving some further e2xploration is the fol-

lowing. As melting occurs, the central portion of the plate becomes thinner.

The compressive forces generated by the surrounding unmelted portion of the

plate will then have a resultant nearer to the melted surface than to the rear,
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thus generating the proper moment to produce rear surface tension. While such

a mechanism is conceivable, it Is not likely to be of significance in a ceramic

because of the long times required to produce the necessary melting (or thermal

softening) necessary for the process to occur.

While the possibility of crack (flaw) growth under the oscillating stress

produced by the fluctuating front surface pressure cannot be precluded as a

producer of the observed failures after a number of pulses, thermal stresses

of increasing amplitudes, upon which the fluctuating stresses are superposed,

would seem to be a more probable cause. A carefully designed and properly

instrumented series of experiments would establish the appropriateness of this

conjecture.
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